马万里教授课题组、Steffen Duhm教授课题组与瑞士洛桑联邦理工学院Michael Grätzel教授课题组合作在 Advanced Materials上发表论文





Guanidinium-Assisted Surface Matrix Engineering for Highly Efficient Perovskite Quantum Dot Photovoltaics


Xufeng Ling,1 Jianyu Yuan,*1 Xuliang Zhang,1 Yuli Qian,1 Shaik M. Zakeeruddin,2 Bryon W. Larson,3 Qian Zhao,3 Junwei Shi,1 Jiacheng Yang,1 Kang Ji,1 Yannan Zhang,1 Yongjie Wang,1 Chunyang Zhang,2 Steffen Duhm,*1 Joseph M. Luther,3 Michael Grätzel,*2 and Wanli Ma*1


1Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for  Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China

2Laboratory of Photonics and Interfaces (LPI), Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL), Station 6, Lausanne CH-1015, Switzerland

3Chemistry & Nanoscience Center National Renewable Energy Laboratory, Golden, CO 80401, USA


Metal halide perovskite quantum dots (Pe-QDs) are of great interest in new-generation photovoltaics (PVs). However, it remains challenging in the construction of conductive and intact Pe-QD films to maximize their functionality. Herein, a ligand-assisted surface matrix strategy to engineer the surface and packing states of Pe-QD solids is demonstrated by a mild thermal annealing treatment after ligand exchange processing (referred to as “LE-TA”) triggered by guanidinium thiocyanate. The “LE-TA” method induces the formation of surface matrix on CsPbI3 QDs, which is dominated by the cationic guanidinium (GA+) rather than the SCN-, maintaining the intact cubic structure and facilitating interparticle electrical interaction of QD solids. Consequently, the GA-matrix-confined CsPbI3 QDs exhibit remarkably enhanced charge mobility and carrier diffusion length compared to control ones, leading to a champion power conversion efficiency of 15.21% when assembled in PVs, which is one of the highest among all Pe-QD solar cells. Additionally, the “LE-TA” method shows similar effects when applied to other Pe-QD PV systems like CsPbBr3 and FAPbI3 (FA = formamidinium), indicating its versatility in regulating the surfaces of various Pe-QDs. This work may afford new guidelines to construct electrically conductive and structurally intact Pe-QD solids for efficient optoelectronic devices.








大满贯老品牌网站-402cc永利手机版 澳门威斯尼斯人网址-402cc永利手机版 电子游戏平台官网-402cc永利手机版 357cc拉斯维加斯-402cc永利手机版 金沙澳门登录网站-402cc永利手机版 402com永利1站-402cc永利手机版 345188cc新时代赌城-402cc永利手机版 永利app官方下载-402cc永利手机版 澳门威尼斯app下载-402cc永利手机版 皇冠2登录-402cc永利手机版 永利博-402cc永利手机版 188金宝搏官网下载-402cc永利手机版 新萄京娱乐网址668866-402cc永利手机版 宝马娱乐官网手机版-402cc永利手机版 bet亚洲官方网站-402cc永利手机版 81818威尼斯-402cc永利手机版 必赢亚州手机网站-402cc永利手机版 1zplay比分网-402cc永利手机版 betway必威中文官网-402cc永利手机版 威尼斯人app-402cc永利手机版